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Abstract

This paper presents an exact analytical approach to the calculation of the natural frequencies of structures comprising

contiguous, three-dimensional shear–torsion beams with doubly asymmetric cross-section. Such component members have

the unusual theoretical property that they allow for coupled torsional and shearing deformation, but not bending

deformation. Initially, exact dynamic member stiffness matrices (exact finite elements) are developed for planar shear and

torsional motion. These matrices can be combined in the usual way to model stepped and continuous beams whose

uncoupled frequencies can then be determined exactly. It is then shown how the corresponding coupled frequencies can be

established easily from the uncoupled values through an exact relationship. This enables coupled, three-dimensional

vibration problems to be solved very efficiently using a two-dimensional approach. The paper is concluded with an

example that clarifies the theory, together with a parametric study that enables guidance to be given as to when

lateral–torsional coupling may safely be ignored.

r 2006 Published by Elsevier Ltd.
1. Introduction

Matrix methods of solving problems in dynamics emerged to prominence in the late 1960s. One of the first
papers to describe the formulation of a dynamic stiffness matrix was presented by Laursen et al. [1]. Initially
attention is focused on the development of the individual member matrix, which relates the amplitudes of the
sinusoidally varying moment and shear forces at the end of a beam member to the corresponding
displacements. Subsequently it is shown how these matrices can be formed into an overall dynamic stiffness
matrix for a structure. Cheng [2] and Wang and Kinsman [3] subsequently developed the dynamic stiffness
matrix for a Timoshenko beam. Later Howson and Williams [4] derived the dynamic stiffness matrix of an
axially loaded Timoshenko beam that has been used extensively in the eigensolution of plane frames [5–7].
ee front matter r 2006 Published by Elsevier Ltd.
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In the last two decades, research on the dynamic stiffness matrix formulation for beams has grown
enormously and now encompasses theory for beams on elastic foundations [8–10], tapered beams [11] and
curved beams [9,12–15]. However, a progressively more important area of interest is the bending–torsion
coupled beam. In these beams the elastic centre and the centre of mass are not coincident, so the translational
and torsional modes are inherently coupled as a result of this offset. The solution for individual beams has
been approached in different ways by Gere and Lin [16], Falco and Gasparetto [17] and Dokumaci [18].
However, development of the dynamic stiffness matrix for such beams is relatively new and has been
considered by only a few investigators. Hallauer and Liu [19] derived the exact dynamic stiffness matrix for a
straight, bending–torsion beam using Euler–Bernoulli–Saint Venant theory, but restricted the bending
translation to a single plane. Friberg [20] used the same theory to formulate the equivalent 12� 12 matrix for
translation in two orthogonal planes. He later [21] included the effect of axial load and warping rigidity using
Vlasov’s torsion theory and developed the 14� 14 dynamic stiffness matrix numerically. On the other hand,
Banerjee [22] derived explicit expressions for the stiffness elements and later included the effects of shear
deformation and rotary inertia [23]. Subsequently, Banerjee et al. [24] studied the vibration of a
bending–torsion beam with singly asymmetric cross-section, including warping rigidity and showed that
large errors may be incurred in the calculation of natural frequencies of thin walled open section beam
assemblies when the effect of warping is ignored. In a recent paper Rafezy and Howson [25] considered the
vibration analysis of three-dimensional shear–torsion beams with doubly asymmetric cross-section and
derived a 6� 6 dynamic stiffness matrix. Such beams have the unusual theoretical property that they allow for
coupled torsional and shearing deformation, but not bending deformation. This approach can be used very
efficiently in the approximate determination of the lower natural frequencies of three-dimensional, multi-
storey framed structures [26,27], including those that are doubly asymmetric on plan.

This paper extends the work of Rafezy and Howson [25] by simplifying the method for calculating the exact,
coupled natural frequencies of three-dimensional shear–torsion beams with doubly asymmetric cross-section.
As in the previous paper [25], this formulation finds considerable application in the approximate analysis of
asymmetric, three-dimensional frame structures and yields a particularly simple hand method when the
properties of the structure are uniform throughout its height.

The paper comprises three main parts. Initially the governing differential equations are formulated for
uncoupled, planar shear and torsion using a continuum approach. The equations are solved and posed in the
form of two dimensional, exact member stiffness matrices (exact finite elements) that can be assembled in the
usual way to form any permissible structure. Such a formulation accounts for the uniform distribution of mass
in the member and necessitates the solution of a transcendental eigenvalue problem. This is achieved using the
Wittrick–Williams algorithm. The corresponding equations for coupled motion in three dimensions are then
presented and solved once more in the form of a dynamic stiffness matrix. This matrix itself could be used to
calculate the coupled natural frequencies of an individual member or any appropriate structure comprising
such members. However, a simpler method is then proposed in which the shear–torsion members of the
structure are replaced in turn by their uncoupled counterparts. This enables the exact uncoupled frequencies to
be determined, from which the corresponding coupled frequencies can be evaluated in a simple way through
an exact relationship. Finally, an example is given to clarify the theory, together with a parametric study that
investigates the effect of cross-sectional asymmetry and the ratio of torsional to translational rigidity on the
vibrational behaviour of a shear cantilever. Guidance is then given as to when lateral–torsional coupling may
safely be ignored.
2. Dynamic member stiffness matrix for a two-dimensional shear beam and torsion beam

Fig. 1 depicts a shear beam of length L whose longitudinal, mass and elastic axes all coincide with the z axis.
By definition the beam is only allowed to undergo shear deformation in the x– z and y– z planes. In similar
fashion, Fig. 2 depicts a torsion beam that can only rotate in torsion about its longitudinal axis, thus confining
rotation to the x– y plane. All degrees of freedom are uncoupled and the motion in the three planes can
therefore be dealt with separately. Assuming harmonic motion, Fig. 1(a) depicts the amplitudes of the nodal
forces and displacements when the beam is undergoing shear vibration in the x– z (y– z) plane and Fig. 1(b)
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Fig. 1. Coordinate system and positive sign convention of a two-dimensional shear beam in the local x– z (y– z) plane: (a) amplitudes of

nodal forces and displacements; (b) amplitudes of forces and displacements associated with an elemental length of the beam.
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Fig. 2. Coordinate system and positive sign convention of a two-dimensional torsion beam subjected to pure torsion in the x– y plane: (a)

amplitudes of nodal forces and displacements; (b) amplitudes of forces associated with an elemental length of the beam.
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shows the corresponding forces and displacements associated with an elemental length of the member.
Figs. 2(a) and (b) show the corresponding terms for the case of torsion.

Thus equating the resultant force on an element to the corresponding mass acceleration in each of the three
cases gives

dQxðzÞ

dz
¼ �mo2UðzÞ;

dQyðzÞ

dz
¼ �mo2V ðzÞ and

dTðzÞ

dz
¼ �r2mmo2FðzÞ, (1a2c)

where QxðzÞ, UðzÞ and QyðzÞ, V ðzÞ are the amplitudes of the shear force and lateral displacement in the x– z

and y–z planes, respectively; TðzÞ, FðzÞ are the corresponding terms for torsion in the x– y plane, m is the
uniformly distributed mass/unit length of the beam; o is the circular frequency and rm is the polar mass radius
of gyration of the cross-section. Finally, the constitutive relationships for shear and torsion give

QxðzÞ ¼ GAx

dUðzÞ

dz
; QyðzÞ ¼ GAy

dV ðzÞ

dz
and TðzÞ ¼ GJ

dFðzÞ
dz

, (2a2c)

where GAx, GAy and GJ are the shear and torsional rigidities in the x–z, y– z and x– y planes, respectively.
Introducing the non-dimensional parameter

x ¼ z=L (3)
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enables Eqs. (2) to be written as

QxðxÞ ¼ kxDUðxÞ; QyðxÞ ¼ kyDV ðxÞ and TðxÞ ¼ kjDFðxÞ, (4a2c)

where

D ¼
d

dx
; kx ¼ GAx=L; ky ¼ GAy=L; and kj ¼ GJ=L. (5a2c)

Due to the similarity of Eqs. (4) they may all be written as

F ðxÞ ¼ kDW ðxÞ, (6)

where

F ðxÞ ¼ QxðxÞ; QyðxÞ or TðxÞ,

k ¼ kx; ky or kj

and

W ðxÞ ¼ UðxÞ; V ðxÞ or FðxÞ. (7)

In similar fashion, combining the corresponding parts of Eqs. (1) and (2) yields the required governing
differential equations of motion in the three planes as

ðD2 þ o2l2xÞUðxÞ ¼ 0; ðD2 þ o2l2yÞV ðxÞ ¼ 0 and ðD2 þ o2l2jÞFðxÞ ¼ 0, (8a2c)

where

l2x ¼ mL2=GAx; l2y ¼ mL2=GAy and l2j ¼ r2mmL2=GJ. (9a2c)

Once more due to the similarity of Eqs. (8) they may all be written as

ðD2 þ o2l2ÞW ðxÞ ¼ 0; where l ¼ lx; ly or lj (10)

depending on the expression for W ðxÞ.
The solution to Eq. (10) can be found by substituting the trial solution W ðxÞ ¼ esx, which yields the

characteristic equation

s2 þ l2o2 ¼ 0, (11)

with the result that

s ¼ �ilo; where i ¼
ffiffiffiffiffiffiffi
�1
p

. (12)

It follows that the general solution of Eq. (10) is of the form

W ðxÞ ¼ C1 cos loxþ C2 sin lox. (13)

In turn, the expression for the force F ðxÞ can be obtained from Eq. (6) as

F ðxÞ ¼ kð�C1lo sin loxþ C2lo cos loxÞ. (14)

The nodal displacements and forces at each end of the beam, based on the sign conventions of Figs. 1 and 2,
are, respectively,

At node 1 ðx ¼ 0Þ W ¼W 1; F ¼ �F 1, (15)

At node 2 ðx ¼ 1Þ W ¼W 2; F ¼ F2. (16)

Substituting Eqs. (15) and (16) into Eq. (13) gives

C1

C2

" #
¼

1

sin lo

sin lo 0

� cos lo 1

� �
W 1

W 2

" #
(17)
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and

F1

F2

" #
¼ k

0 �lo

�lo sin lo lo cos lo

� �
C1

C2

" #
. (18)

Combining Eqs. (17) and (18) gives

F1

F2

" #
¼

klo
sin lo

cos lo �1

�1 cos lo

� �
W 1

W 2

" #
(19)

or

f ¼ kd, (20)

where k is the required dynamic stiffness matrix for uncoupled shear or torsion of the beam.
3. Wittrick–Williams algorithm

The dynamic structure stiffness matrix, K, when assembled from the member stiffness matrices yields the
required natural frequencies as solutions of the equation

KD ¼ 0, (21)

where D is the vector of amplitudes of the harmonically varying nodal displacements and K is a function of o,
the circular frequency. When, as in this case, K is developed from exact member theory, the determinant is a
highly irregular, transcendental function of o and the difficulties involved in determining the required natural
frequencies are well known [28]. However, it has been proven [29] that any required natural frequency can be
converged upon to any desired accuracy with the certain knowledge that none have been missed by use of the
Wittrick–Williams (W–W) algorithm [30,31], which states that

J ¼ J0 þ sfKg, (22)

where J is the number of natural frequencies of the structure exceeded by some trial frequency, o�, J0 is the
number of natural frequencies that would still be exceeded if all members were clamped at their ends so as to
make D ¼ 0 and sfKg is the sign count of the matrix K. sfKg is defined in Ref. [31] and is equal to the number
of negative elements on the leading diagonal of the upper triangular matrix obtained from K, when o ¼ o�, by
the standard form of Gauss elimination without row interchanges.

From the definition of J0 it can be seen that [30,31]

J0 ¼
X

Jm, (23)

where Jm is the number of natural frequencies of a component member, with its ends clamped, which have
been exceeded by o� and the summation extends over all members.

In the present case it is possible to determine the value of Jm for a member symbolically using a direct
approach, as follows.

The end displacement conditions for a clamped–clamped member in a given plane are

at node 1 ðx ¼ 0Þ W ð0Þ ¼ 0; at node 2 ðx ¼ 1Þ W ð1Þ ¼ 0. (24)

Substituting Eq. (24) into Eq. (13) gives

C1 ¼ 0 and C2 sin lo ¼ 0, (25)

which requires that lo ¼ ip and hence

o ¼
ip
l
ði ¼ 1; 2; 3; . . .Þ. (26)
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Thus Jm for any trial frequency o� is given by

Jm ¼ int
o�

ðp=lÞ

� �
, (27)

in which int represents the image integer function, i.e. the greatest integer oo�=ðp=lÞ.

4. Three-dimensional shear–torsion beam

Fig. 3 shows a uniform, three-dimensional shear–torsion beam of length L, with doubly asymmetric
cross-section. The origin of the coordinate system is located at the shear centre S, with the result that
the elastic axis coincides with the z-axis. Point C on the cross-section denotes the centre of mass and its
location in the coordinate system Sxy is given by xc and yc. The resulting mass axis then runs parallel to the
z-axis through xc, yc.

Rafezy and Howson [25] derived the governing differential equations of motion of such a beam as

U 00ðxÞ þ o2l2xUðxÞ � yco
2l2xFðxÞ ¼ 0, (28a)

V 00ðxÞ þ o2l2yV ðxÞ þ xco2l2yFðxÞ ¼ 0, (28b)

F00ðxÞ � ð1=r2mÞyco
2l2jUðxÞ þ ð1=r2mÞxco2l2jV ðxÞ þ o2l2jFðxÞ ¼ 0, (28c)

in which UðxÞ, V ðxÞ and FðxÞ are the amplitudes of the sinusoidally varying displacements in the x, y and
torsional directions, respectively, and

l2x ¼ mL2=GAx; l2y ¼ mL2=GAy; l2j ¼ r2mmL2=GJ and x ¼ z=L, (29a2d)

where GAx and GAy are the shear rigidities of the beam in the x and y directions, respectively, and GJ and rm

are the torsional rigidity and polar mass radius of gyration of the cross-section.
They proceeded to solve the equations and posed the solution in the form of a dynamic stiffness matrix

which can be used directly for the frequency analysis of three-dimensional shear–torsion beams. Part of their
solution is reproduced here as it is needed when deriving the new method based on a simpler, two-dimensional
approach.

Rewriting Eqs. (28) in matrix form gives

D2 þ o2l2x 0 �yco
2l2x

0 D2 þ o2l2y xco2l2y

�ð1=r2mÞyco
2l2j ð1=r2mÞxco2l2j D2 þ o2l2j

2
664

3
775

UðxÞ

V ðxÞ

FðxÞ

2
64

3
75 ¼ 0, (30)

in which D ¼ d=dx.
(a)

y

S

Cxc

u(z,t)

v(
z,

t)

C″ y

 ϕ (z,t)

S′
x

C′

x
yc

(b)
y

S

z

C

yc

xc

x

elastic axis

mass axisϕ

Fig. 3. (a) Coordinate system and notation for a three-dimensional, shear–torsion beam with doubly asymmetric cross-section; (b) typical

displacement configuration of a cross-section.
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Eq. (30) can be combined into one equation by eliminating either U, V or F to give the sixth-order
differential equation

D2 þ o2l2x 0 �yco
2l2x

0 D2 þ o2l2y xco2l2y

�ð1=r2mÞyco
2l2j ð1=r2mÞxco2l2j D2 þ o2l2j

��������

��������
W ðxÞ ¼ 0, (31)

where W ¼ U , V or F.
The general solution of Eq. (31) is found by substituting the trial solution W ðxÞ ¼ esx to yield the

characteristic equation

b2
þ l2x 0 �ycl

2
x

0 b2
þ l2y xcl

2
y

�ycl
2
j xcl

2
j r2mðb

2
þ l2jÞ

��������

��������
¼ 0, (32)

where b2
¼ ðs=oÞ2.

Eq. (32) is a cubic equation in the frequency parameter b2 and it has been proven by Rafezy and Howson
[25] that it always has three negative real roots. Let these three roots be �b2

1, �b2
2 and �b2

3, where b2
j (j ¼ 1,2,3)

are all real and positive. Therefore,

s

o

� �2
¼ �b2

j giving s ¼ �iobj ðj ¼ 1; 2; 3Þ where i ¼
ffiffiffiffiffiffiffi
�1
p

. (33)

It follows that the solution of Eq. (31) can be written in the form

W ðxÞ ¼ C1 cos b1oxþ C2 sin b1oxþ C3 cos b2oxþ C4 sin b2oxþ C5 cos b3oxþ C6 sin b3ox. (34)

Eq. (34) represents the solution for UðxÞ, V ðxÞ and FðxÞ, since they are all related via Eq. (30). They can
therefore be written individually as

UðxÞ ¼ tu
1ðC1 cos b1oxþ C2 sin b1oxÞ þ tu

2ðC3 cos b2oxþ C4 sin b2oxÞ þ tu
3ðC5 cos b3oxþ C6 sin b3oxÞ, (35a)

V ðxÞ ¼ tv
1ðC1 cos b1oxþ C2 sin b1oxÞ þ tv

2ðC3 cos b2oxþ C4 sin b2oxÞ þ tv
3ðC5 cos b3oxþ C6 sin b3oxÞ, (35b)

FðxÞ ¼ C1 cos b1oxþ C2 sin b1oxþ C3 cos b2oxþ C4 sin b2oxþ C5 cos b3oxþ C6 sin b3ox, (35c)

in which the constants tu
j and tv

j (j ¼ 1,2,3) are given by

tu
j ¼

ycl
2
x

l2x � b2
j

and tv
j ¼
�xcl

2
y

l2y � b2
j

ðj ¼ 1; 2; 3Þ. (36a,b)

The corresponding forces can be retrieved from Eqs. (5)–(7) as

QxðzÞ ¼ kxDUðxÞ; QyðzÞ ¼ kyDV ðxÞ and TðzÞ ¼ kjDFðxÞ. (37a2c)

The nodal forces and displacements can now be defined in the member co-ordinate system of Figs. 4(a) and
(b), as follows:

at ðx ¼ 0Þ U ¼ U1; V ¼ V1; F ¼ F1; Qx ¼ �Q1x; Qy ¼ �Q1y; T ¼ �T1, (38a)

at ðx ¼ 1Þ U ¼ U2; V ¼ V2; F ¼ F2; Qx ¼ Q2x; Qy ¼ Q2y; T ¼ T2. (38b)

The nodal displacements can then be determined from Eqs. (35) as

d1

d2

" #
¼

E 0

0 E

� �
I 0

C S

� �
Co

Ce

" #
(39)

or

d ¼ sc, (40)
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∂z

dzT + 

U

z

z

1 2

T2

Qy

T

∂z 
dzT +

dz ∂z

∂Qy
Qy + dz
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Fig. 4. End conditions for forces and displacements of a three-dimensional, doubly asymmetric shear beam: (a) sign convention for force

and displacement for the shear beam in the x– z plane; (b) sign convention for force and displacement for the shear beam in the y– z plane.
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where

d1 ¼

U1

V 1

F1

2
64

3
75; d2 ¼

U2

V 2

F2

2
64

3
75; Co ¼

C1

C3

C5

2
64

3
75; Ce ¼

C2

C4

C6

2
64

3
75; E ¼

tu
1 tu

2 tu
3

tv
1 tv

2 tv
3

1 1 1

2
64

3
75,

C ¼

Cb1o 0 0

0 Cb2o 0

0 0 Cb3o

2
64

3
75; S ¼

Sb1o 0 0

0 Sb2o 0

0 0 Sb3o

2
64

3
75,

I is the unit matrix; Sbjo ¼ sin bjo and Cbjo ¼ cos bjo ðj ¼ 1; 2; 3Þ. (41)

Hence the vector of constants ½Co Ce�
T can be determined from Eq. (39) as

Co

Ce

" #
¼

I 0

C S

� ��1
E 0

0 E

� ��1 d1

d2

" #
. (42)

In similar fashion the vector of nodal forces can be determined from Eqs. (37) as

p1

p2

" #
¼

DEb 0

0 DEb

� �
0 �I

�S C

� �
Co

Ce

" #
, (43)

or

p ¼ s�c, (44)
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where

p1 ¼

Q1x

Q1y

T1

2
64

3
75; p2 ¼

Q2x

Q2y

T2

2
64

3
75; D ¼ o

kx 0 0

0 ky 0

0 0 kj

2
64

3
75 and b ¼

b1 0 0

0 b2 0

0 0 b3

2
64

3
75. (45)

Thus the required stiffness matrix can be developed by substituting Eqs. (42) into Eqs. (43) to give

p1

p2

" #
¼

DEb 0

0 DEb

� �
0 �I

�S C

� �
I 0

C S

� ��1
E 0

0 E

� ��1 d1

d2

" #
(46)

or

p ¼ s�s�1d ¼ kd. (47)

5. Equivalent two-dimensional approach

The dynamic stiffness relationship of Eq. (47) represents the exact solution of the simultaneous differential
equations that were presented in Eq. (28) and which govern the motion of a three-dimensional shear–torsion
beam with doubly asymmetric cross-section. It could therefore be used in the usual way to develop a model of
any permissible structure, from which the natural frequencies could be determined using the W–W algorithm.
There is, however, a very much easier way of evaluating precisely the same coupled natural frequencies using a
simple two step procedure which is proven to be exact in the following section.

5.1. Analogous uncoupled system

The effect of setting xc and yc to zero in Eq. (31) is that the equations become decoupled with the result that
they can be written in the following form:

ðD2 þ o2l2xÞUðxÞ ¼ 0, (48a)

ðD2 þ o2l2yÞV ðxÞ ¼ 0, (48b)

ðD2 þ o2l2jÞFðxÞ ¼ 0. (48c)

These are precisely the three governing equations of uncoupled motion previously developed from first
principles in Eqs. (8) and whose exact solutions are given in dynamic stiffness terms by Eq. (20).

5.2. Coupling of the modes

A three-dimensional shear–torsion beam is now considered with three different sets of boundary conditions
imposed in turn. In each case an exact relationship is developed between the coupled and uncoupled natural
frequencies.

5.2.1. Free– free member

The natural frequencies of a three-dimensional, free–free member can be determined as those values of the
frequency that cause the determinant of its dynamic stiffness matrix to be zero, since the boundary conditions
impose no constraint on the member. Although |k| ¼ 0 could be solved analytically from Eq. (47), such a
tedious approach is not required since identical results can be achieved by a simple alternative method based
on Eq. (44) with p ¼ 0. Hence

s�c ¼ 0. (49)

The non-trivial solutions of Eq. (49) can be obtained from

js�j ¼ 0, (50)
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where |s*| is always a smooth continuous function of frequency. Substituting s� from Eq. (43) into
Eq. (50) gives

DEb 0

0 DEb

����
���� 0 �I

�S C

����
���� ¼ 0. (51)

Now it is easy to show that the left-hand determinant for a member with a doubly asymmetric cross-section
cannot be zero for non-trivial solutions. Also, noting that the right-hand determinant is equal to �|S|, Eq. (51)
is only satisfied when the product of the diagonal terms in S is zero, i.e.

Y3
j¼1

Sbjo ¼ 0, (52)

which is satisfied when

oðiÞj ¼ ði � 1Þ
p
bj

; j ¼ 1; 2; 3

� �
; i ¼ 1; 2; 3; . . . , (53)

since there is a coupled frequency stemming from the ith uncoupled frequency in each of the three
planes.

The natural frequencies of the analogous uncoupled free–free member, i.e. with a doubly symmetric cross-
section, can easily be calculated using Eqs. (32) and (53) with xc ¼ yc ¼ 0. It can then be seen from Eq. (32)
and the explanation below it, that the required solutions are given by

b2
¼ �l2x ¼ �b2

1; b2
¼ �l2y ¼ �b2

2 and b2
¼ �l2j ¼ �b2

3, (54)

or

b1 ¼ lx; b2 ¼ ly and b3 ¼ lj. (55)

Hence from Eq. (53)

oðiÞx ¼ ði � 1Þ
p
lx

; oðiÞy ¼ ði � 1Þ
p
ly

and oðiÞj ¼ ði � 1Þ
p
lj
; i ¼ 1; 2; 3; . . . . (56a2c)

Premultiplying Eqs. (32) by

1

b2l2x
0 0

0
1

b2l2y
0

0 0
1

b2l2j

���������������

���������������
(57)

leaves the result unaltered, but enables the determinant to be written as

1

l2x
þ

1

b2
0 �

yc

b2

0
1

l2y
þ

1

b2

xc

b2

�
yc

b2

xc

b2
r2m

1

l2j
þ

1

b2

 !

���������������

���������������
¼ 0. (58)
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Since �bj
2
ðj ¼ 1; 2; 3Þ are the roots of Eq. (58), substituting 1=l2x, 1=l

2
y, 1=l

2
j and 1=b2

j ðj ¼ 1; 2; 3Þ from
Eqs. (56) and (53) in Eq. (58) gives

oðiÞ
2

j � oðiÞ
2

x 0 �yco
ðiÞ2

j

0 oðiÞ
2

j � oðiÞ
2

y xco
ðiÞ2

j

�yco
ðiÞ2

j xco
ðiÞ2

j r2m oðiÞ
2

j � oðiÞ
2

j

� �

����������

����������
¼ 0 ðj ¼ 1; 2; 3Þ ði ¼ 1; 2; 3; . . .Þ. (59)

Eq. (59) defines the exact relationship between the coupled natural frequencies of a member with a doubly
asymmetric cross-section oðiÞj and the corresponding uncoupled natural frequencies in the x, y and torsional
directions. Since oðiÞx , oðiÞy and oðiÞj are simple to calculate, it provides a significantly easier way of finding the
coupled natural frequencies.

5.2.2. Clamped– clamped member

In similar fashion to the previous section, the most efficient way of determining the coupled natural
frequencies is to use Eq. (40) and note that d ¼ 0 for a clamped–clamped member. The required condition is
then that |s| ¼ 0 and from Eq. (39) this is equivalent to

E 0

0 E

����
���� I 0

C S

����
���� ¼ 0. (60)

Once more, it is easy to show that the left-hand determinant for a member with a doubly asymmetric
cross-section cannot be zero for non-trivial solutions. Thus, noting that the right-hand determinant is that of a
lower triangular matrix, Eq. (60) is only satisfied when the product of its significant leading diagonal terms is
zero, i.e.

Y3
j¼1

Sbjo ¼ 0, (61)

which is satisfied when

oðiÞj ¼
ip
bj

; j ¼ 1; 2; 3

� �
; i ¼ 1; 2; 3; . . . . (62)

The natural frequencies of the analogous uncoupled clamped–clamped member can easily be calculated
using Eqs. (32) and (53) with xc ¼ yc ¼ 0. From Eq. (32) it is clear that

b1 ¼ lx; b2 ¼ ly and b3 ¼ lj. (63)

Hence from Eq. (62)

oðiÞx ¼
ip
lx

; oðiÞy ¼
ip
ly

and oðiÞj ¼
ip
lj
; i ¼ 1; 2; 3; . . . . (64a2c)

In a similar fashion to the free–free member, the relationship between the coupled and uncoupled natural
frequencies of a clamped–clamped member can be obtained by substituting 1=l2x, 1=l2y, 1=l2j and 1=b2

j

from Eqs. (64) and (62) into Eq. (58). Eq. (59) therefore provides an exact solution for clamped–clamped
members too.

5.2.3. Clamped– free member

The boundary conditions for a cantilever beam that is clamped at node 1 and free at node 2 are

d1 ¼ 0; p2 ¼ 0. (65a,b)
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Eq. (65b) can be written in the following form using Eqs. (37):

DUðx ¼ 1Þ

DV ðx ¼ 1Þ

DFðx ¼ 1Þ

2
64

3
75 ¼ 0 or d02 ¼ 0, (66)

where d02 is the derivative of the vector of displacement components when x ¼ 1.
If Eqs. (65a) and (66) are substituted into Eqs. (39), suitably differentiated, it is clear that the condition for

non-trivial solutions is

b1b2b3o3
E 0

0 E

����
���� I 0

S C

����
���� ¼ 0. (67)

However, it is easy to show that only the right-hand determinant can pass through zero for non-trivial
solutions. Thus, noting that it has the form of a lower triangular matrix, Eq. (67) is only satisfied when the
product of its significant leading diagonal terms is zero, i.e.

Y3
j¼1

Cbjo ¼ 0, (68)

which is satisfied when

oðiÞj ¼ i �
1

2

� �
p
bj

; j ¼ 1; 2; 3

� �
; i ¼ 1; 2; 3; . . . . (69)

Hence the required natural frequencies can be determined conveniently using Eqs. (69).
As before, the natural frequencies of an analogous uncoupled clamped–free member can easily be calculated

using Eqs. (32) and (69), with xc ¼ yc ¼ 0. From Eq. (32) it is clear that

b1 ¼ lx; b2 ¼ ly and b3 ¼ lj (70)

and hence from Eq. (68)

oðiÞx ¼ i �
1

2

� �
p
lx

; oðiÞy ¼ i �
1

2

� �
p
ly

and oðiÞj ¼ i �
1

2

� �
p
lj
; i ¼ 1; 2; 3. (71a2c)

In a similar fashion to the free–free member, the relationship between the coupled and uncoupled natural
frequencies of a clamped–free member can be obtained by substituting 1=l2x, 1=l2y, 1=l2j and 1=b2

j from
Eqs. (71) and (69) into Eq. (58). Eq. (59) therefore provides an exact solution for clamped–free members
as well.

5.3. Advantages of the two-dimensional approach

The two-dimensional approach offers two major advantages. Firstly, it is very much faster than using the
three-dimensional equations. Secondly, it can deal with singly or doubly asymmetric sections equally easily, by
setting either xc or yc equal to zero in Eq. (59). This is not possible with the three-dimensional equations,
which have to be re-cast from first principles.

6. Numerical results

The purpose of this section is to clarify the use of the two-dimensional approach by giving two examples.
The first example demonstrates the ability of the method to calculate the coupled natural frequencies of a
continuous, but stepped, three-dimensional shear–torsion beam with doubly asymmetric cross-section. In the
second example the theory is used efficiently to generate a comprehensive parametric study that investigates
the effect of the eccentricity of the mass axis, together with the ratio of the torsional to translational rigidity,
by comparing the coupled and uncoupled natural frequencies of a shear cantilever with a doubly asymmetric
cross-section.
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Example 1. A continuous, three dimensional, stepped, shear–torsion beam with doubly asymmetric cross-
section is now considered. The structure is analysed with three sets of boundary conditions, namely
clamped–clamped, clamped–free and free–free. It should be noted that the natural coupling between
component members must not be destroyed. Thus a nodal support in one plane must be echoed in the other
planes. The properties of each of the stepped sections are given in Fig. 5. The eccentricities and polar mass
radius of gyration of the cross-section about the z-axis for all sections in the coordinate system of Fig. 1 are
xc ¼ 0:2m, yc ¼ 0:3m and r2m ¼ 0:23m2.
Table 1 shows the uncoupled natural frequencies for the structure of Example 1 obtained when using the
appropriate form of Eq. (20) that corresponds to uncoupled motion in the x– z, y– z and torsional planes taken
in turn. Table 2 gives the corresponding coupled natural frequencies using Eq. (59) and the uncoupled
frequencies of Table 1. The results are in exact agreement with the coupled natural frequencies obtained
L1

1 2 3

m1= 5000 kg/m
L1 = 6m

GAx1 = 8×109 N

GAy1= 6×109 N

GJ1 = 2×109 Nm2

L2 L3

GJ2= 1.8×109 Nm2
GAy2= 5×109 N

GAx2= 7×109 N

L2 = 6 m
m2= 4500 kg/m

GJ3  = 1.3×109 Nm2
GAy3= 4×109 N

GAx3 = 5×109 N

L3 = 6 m 
m3= 4000 kg/m

Fig. 5. Continuous stepped shear–torsion beam with doubly asymmetric cross-section.

Table 1

The uncoupled natural frequencies (Hz) of the stepped beam structure of Example 1 using the two-dimensional theory of Eq. (20) on

each plane in turn

Freq. no. x–z plane y– z plane Torsional

i C–C C–F F–F C–C C–F F–F C–C C–F F–F

1 32.23 18.40 33.93 29.14 15.84 29.21 34.97 19.31 35.85

2 67.68 50.06 66.26 58.44 43.65 57.96 71.38 52.80 69.89

3 99.76 82.42 101.27 86.95 71.59 87.78 105.35 87.00 106.67

C–F implies that the left-hand end of the structure is clamped, while the right-hand is free, etc. Rigid body modes have been omitted.

Table 2

The coupled natural frequencies (Hz) of the stepped beam structure of Example 1 derived from Eq. (59) and the uncoupled frequencies

given in Table 1

Uncoupled freq. no. j ¼ 1 j ¼ 2 j ¼ 3

i C–C C–F F–F C–C C–F F–F C–C C–F F–F

1 24.90 13.68 25.29 30.59 16.78 30.95 67.40 37.20 68.85

2 50.47 37.47 49.66 61.81 45.96 60.93 137.26 101.62 134.55

3 74.70 61.62 75.59 91.55 75.51 92.67 202.62 167.31 205.28

Note that j ¼ 1; 2; 3 represents the coupled frequency corresponding to the ith uncoupled frequency in the x–z, y–z and x–y (torsional)

planes, respectively.
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directly from the three-dimensional formulation of Eq. (47), whose development is described more fully
elsewhere [25].

Example 2. The second example comprises a parametric study that illustrates the effect of both mass
eccentricity and the ratio of torsional rigidity to translational rigidity on the coupled natural frequencies of a
doubly asymmetric shear cantilever of constant cross-section. This particular structural form has been chosen
because the non-dimensional results presented relate to any doubly asymmetric cantilever, including three-
dimensional, multi-storey building structures, which can be modelled quite accurately as such [26,27].

Four non-dimensional parameters are defined, namely the ratio of torsional rigidity to translational rigidity in
each plane, lx/lj and ly/lj, the coupling factor, fc, and the eccentricity ratio re. The coupling factor is defined as

f c ¼
ðo3=o1Þ

maxðox;oy;ojÞ
	
minðox;oy;ojÞ

, (72)
� y
/�

�

�x/�� �x/��

�x/�� �x/��

� y
/�

�

� y
/�

�

� y
/�

�
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(a)
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0.2 0.60.4 1/0.80.8 1/0.61.0 1/0.4
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0.6

0.4

1/0.4

0.8

1/0.2

1/0.6
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(c)

1

0.2 0.60.4 1/0.80.8 1/0.61.0 1/0.4
0.2

0.6

0.4

1/0.4

0.8

1/0.2

1/0.6

1/08

1/0.2

(d)

Fig. 6. Variation of the coupling factor, fc, versus lx/lj and ly/lj. fc is shown as a set of contours that are annotated with their values

where space permits. The maximum value of fc ¼ fcmax always occurs at lx/lj ¼ ly/lj ¼ 1. (a) re ¼ 0.1, contour increment ¼ 0.01 and

fcmax ¼ 1.10; (b) re ¼ 0.2, contour increment ¼ 0.02 and fcmax ¼ 1.23; (c) re ¼ 0.5, contour increment ¼ 0.05 and fcmax ¼ 1.73; (d)

re ¼ 0.95, contour increment ¼ 0.25 and fcmax ¼ 6.25.
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where ox, oy and oj are the fundamental uncoupled frequencies in the x– z, y– z and torsional planes and o1 and
o3 are the lowest and highest frequencies of the fundamental mode of vibration. The eccentricity ratio is given as

r2e ¼ ðx
2
c þ y2

cÞ=r2m. (73)

The coupling factor indicates the effect of eccentricity and the ratio of torsional rigidity to translational rigidity on
the coupled frequencies, while the eccentricity parameter represents a measure of the mass centre offset from the
shear centre and is equal to zero in the case of twofold symmetry. It is clear that re must lie in the range 0prep1
since r2m ¼ r2mc þ x2

c þ y2
c . The ratio of the torsional rigidity to each of the translational rigidities is assumed to

vary from 0.2 to 5.
The graphs of Figs. 6a–d show the variation of fc with lx/lj and ly/lj for re ¼ 0:1, 0.2, 0.5 and 0.95,

respectively. All necessary data to calculate the results can be inferred from the graphs.
It can be seen that maximum coupling occurs when the torsional and translational rigidities are equal. It

also shows that the greater the mass centre offset, re, the greater the coupling factor, fc, becomes fcmax shows
the maximum coupling factor, fc, for each graph. The following conclusions can also be drawn from
the graphs.
1.
 The coupling factor, fc, never exceeds 1.10 when rep0:1. For such structures the effect of coupling may
therefore be ignored to engineering accuracy.
2.
 The coupling factor, fc, for structures in the range of 0:1orep0:2 is mainly smaller than 1.1. Caution
should be exercised for such structures when 0:8olx=ljo1:25 and 0:8oly=ljo1:25.
3.
 For structures with 0:2orep0:5 the coupling factor, fc, is generally greater than 1.10, so the effect of
coupling is significant, especially if the structure’s properties, lx/lj and ly/lj, fall inside the contour line
1.25 in Fig. 6c.
4.
 The coupling factor, fc, is quite large when re ¼ 0:95 and it can be as big as 6.25. This shows that an offset in
the mass centre may change the results by up to 600%.

7. Conclusions

A two phase process has been demonstrated that enables the coupled natural frequencies of contiguous
structures composed of three-dimensional shear–torsion beams with doubly asymmetric cross-section to be
determined simply and exactly using a two-dimensional approach. The solution procedure is very fast and can
deal with singly or doubly asymmetric cross-sections equally easily. The method has considerable potential for
modelling asymmetric three-dimensional frame structures with step changes of properties along the height of
the structure.
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